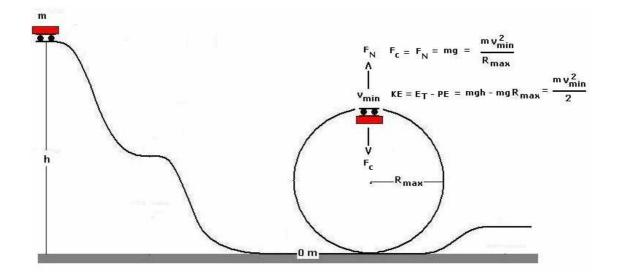
AP Physics John Dewey High School Mr. Klimetz

Derivation of the Equation for Calculating the Maximum Radius and Minimum Speed of Inverted Transit of a Roller Coaster Loop



A roller coaster of mass **m** at rest at the top of a frictionless roller coaster track of height **h** descends to base level and then enters an inverted circular loop. Derive the equations for calculating the maximum permissible radius [\mathbf{R}_{max}] of the inverted circular loop in order for the roller coaster to remain on the track and completely transit the loop.

At the top of the loop

$F_c = -F_N = F_g$

where F_c is centripetal force, F_N is normal force and F_g is the weight of the roller coaster. Hence

$F_c = m v_{min}^2 / R_{max}$

is set equal to $\mathbf{F}_{\mathbf{N}}$ which is equal in magnitude to $\mathbf{F}_{\mathbf{g}}$:

$F_c = mv_{min}^2/R_{max} = F_N = mg$

where \mathbf{v}_{min} in the minimum speed required for the roller coaster to remain on the track and completely transit the loop and $\mathbf{g} = \mathbf{10}$. $\mathbf{m/s}^2$.

Cancelling \mathbf{m} from both sides yields

$v_{min}^2/R_{max} = g$

Multipying both sides by \mathbf{R}_{max} yields

$$v_{\min}^2 = gR_{\max}$$

Taking the square root of both sides thence yields

$$\mathbf{v}_{\min} = [\mathbf{g}\mathbf{R}_{\max}]^{1/2}$$

[A]

Considering the roller coaster in terms of its total $[E_T]$, gravitational potential [PE], and kinetic [KE] energies we have

$E_T = KE + PE$

Solving for **KE**

$\mathbf{K}\mathbf{E} = \mathbf{E}_{\mathrm{T}} - \mathbf{P}\mathbf{E}$

Substituting the expressions for each yields

$mv_{min}^2/2 = mgh - mg[2R_{max}]$

Cancelling **m** from both sides yields

$v_{min}^2/2 = gh - g[2R_{max}]$

and factoring out **g** from the right side of the equation yields

$$v_{min}^2/2 = g[h - 2R_{max}]$$

Multiplying both sides by 2 yields

 $v_{min}^2 = 2g[h - 2R_{max}]$

Applying the distributive property yields

$v_{min}^2 = 2gh - 4R_{max}$

Substituting equation [A] above

$$\mathbf{v}_{\min} = \left[\mathbf{g}\mathbf{R}_{\max}\right]^{1/2}$$

for \boldsymbol{v}_{min} thence yields

$([gR_{max}]^{1/2})^2 = gR_{max} = 2gh - 4R_{max}$

Adding **4R**_{max} to both sides of the equation yields

$5gR_{max} = 2gh$

Dividing both sides of the equation by 5g thence yields

 $R_{max} = 2gh/5g$

Cancelling **g** from the right side of the equation hence yields

$R_{max} = 2h/5$

[B]

Therefore, the maximum radius [R_{max}] of an inverted circular loop is 0.4 of the starting height of any roller coaster [B].